最先进的对话模型仍然对事实准确性和自我矛盾甚至困难。轶事,他们已被观察到在整个话语中未能维持性质身份;更具体地,可能会涉及其对话者的作用。在这项工作中,我们正规化和量化这种缺陷,并通过人类评估实验表明这确实是一个问题。相比之下,我们展示了专门识别谁在谈话的歧视模型可以表现良好;此外,这些可以用作自动指标。最后,我们评估了各种缓解方法,包括模型架构,培训协议和解码策略的变化。根据人类的注释者,我们最好的车型减少了近65%的误认为是近65%,同时提高了参与度。尽管有这些结果,但我们发现维持性格身份仍然是一个具有挑战性的问题。
translated by 谷歌翻译
大型语言模型可以产生流畅的对话,但往往是幻觉的事实不准确。虽然检索式增强的模型有助于缓解这个问题,但他们仍然面临着推理的艰难挑战,以便同时提供正确的知识和产生对话。在这项工作中,我们提出了一种模块化模型,知识响应(K2R),将知识纳入会话代理商,这将这个问题分解为两个更简单的步骤。 K2R首先生成一个知识序列,给定对话背景作为中间步骤。在此“推理步骤”之后,该模型随后参加自己生成的知识序列,以及对话背景,以产生最终的响应。在详细的实验中,我们发现这种模型在知识接地的对话任务中少幻觉,并且在可解释性和模块化方面具有优势。特别地,它可以用来将QA和对话系统一起融合在一起,以使对话代理能够提供知识渊博的答案,或者QA模型,以在零拍摄设置中给出对话响应。
translated by 谷歌翻译
Chit-chat models are known to have several problems: they lack specificity, do not display a consistent personality and are often not very captivating. In this work we present the task of making chit-chat more engaging by conditioning on profile information. We collect data and train models to (i) condition on their given profile information; and (ii) information about the person they are talking to, resulting in improved dialogues, as measured by next utterance prediction. Since (ii) is initially unknown, our model is trained to engage its partner with personal topics, and we show the resulting dialogue can be used to predict profile information about the interlocutors.
translated by 谷歌翻译
Traditionally, data analysis and theory have been viewed as separate disciplines, each feeding into fundamentally different types of models. Modern deep learning technology is beginning to unify these two disciplines and will produce a new class of predictively powerful space weather models that combine the physical insights gained by data and theory. We call on NASA to invest in the research and infrastructure necessary for the heliophysics' community to take advantage of these advances.
translated by 谷歌翻译
Regularising the parameter matrices of neural networks is ubiquitous in training deep models. Typical regularisation approaches suggest initialising weights using small random values, and to penalise weights to promote sparsity. However, these widely used techniques may be less effective in certain scenarios. Here, we study the Koopman autoencoder model which includes an encoder, a Koopman operator layer, and a decoder. These models have been designed and dedicated to tackle physics-related problems with interpretable dynamics and an ability to incorporate physics-related constraints. However, the majority of existing work employs standard regularisation practices. In our work, we take a step toward augmenting Koopman autoencoders with initialisation and penalty schemes tailored for physics-related settings. Specifically, we propose the "eigeninit" initialisation scheme that samples initial Koopman operators from specific eigenvalue distributions. In addition, we suggest the "eigenloss" penalty scheme that penalises the eigenvalues of the Koopman operator during training. We demonstrate the utility of these schemes on two synthetic data sets: a driven pendulum and flow past a cylinder; and two real-world problems: ocean surface temperatures and cyclone wind fields. We find on these datasets that eigenloss and eigeninit improves the convergence rate by up to a factor of 5, and that they reduce the cumulative long-term prediction error by up to a factor of 3. Such a finding points to the utility of incorporating similar schemes as an inductive bias in other physics-related deep learning approaches.
translated by 谷歌翻译
We introduce camouflaged data poisoning attacks, a new attack vector that arises in the context of machine unlearning and other settings when model retraining may be induced. An adversary first adds a few carefully crafted points to the training dataset such that the impact on the model's predictions is minimal. The adversary subsequently triggers a request to remove a subset of the introduced points at which point the attack is unleashed and the model's predictions are negatively affected. In particular, we consider clean-label targeted attacks (in which the goal is to cause the model to misclassify a specific test point) on datasets including CIFAR-10, Imagenette, and Imagewoof. This attack is realized by constructing camouflage datapoints that mask the effect of a poisoned dataset.
translated by 谷歌翻译
Large-scale models combining text and images have made incredible progress in recent years. However, they can still fail at tasks requiring compositional knowledge, such as correctly picking out a red cube from a picture of multiple shapes. We examine the ability of CLIP (Radford et al., 2021), to caption images requiring compositional knowledge. We implement five compositional language models to probe the kinds of structure that CLIP may be using, and develop a novel training algorithm, Compositional Skipgram for Images (CoSI), to train these models. We look at performance in attribute-based tasks, requiring the identification of a particular combination of attribute and object (such as "red cube"), and in relational settings, where the spatial relation between two shapes (such as "cube behind sphere") must be identified. We find that in some conditions, CLIP is able to learn attribute-object labellings, and to generalize to unseen attribute-object combinations. However, we also see evidence that CLIP is not able to bind features together reliably. Moreover, CLIP is not able to reliably learn relations between objects, whereas some compositional models are able to learn these perfectly. Of the five models we developed, none were able to generalize to unseen relations.
translated by 谷歌翻译
We present SODA: the first publicly available, million-scale high-quality social dialogue dataset. Using SODA, we train COSMO: a generalizable conversation agent outperforming previous best-performing agents on both in- and out-of-domain datasets. In contrast to most existing crowdsourced, small-scale dialogue corpora, we distill 1.5M socially-grounded dialogues from a pre-trained language model (InstructGPT; Ouyang et al., 2022). Dialogues are distilled by contextualizing social commonsense knowledge from a knowledge graph (Atomic10x; West et al., 2022). Human evaluation shows that dialogues in SODA are more consistent, specific, and (surprisingly) natural than prior human-authored datasets - e.g., DailyDialog (Li et al., 2017), BlendedSkillTalk (Smith et al., 2020). In addition, extensive evaluations show that COSMO is significantly more natural and consistent on unseen datasets than best-performing dialogue models - e.g., GODEL (Peng et al., 2022), BlenderBot (Roller et al., 2021), DialoGPT (Zhang et al., 2020). Furthermore, it is sometimes even preferred to the original human-written gold responses. We make our data, models, and code public.
translated by 谷歌翻译
As language models (LMs) scale, they develop many novel behaviors, good and bad, exacerbating the need to evaluate how they behave. Prior work creates evaluations with crowdwork (which is time-consuming and expensive) or existing data sources (which are not always available). Here, we automatically generate evaluations with LMs. We explore approaches with varying amounts of human effort, from instructing LMs to write yes/no questions to making complex Winogender schemas with multiple stages of LM-based generation and filtering. Crowdworkers rate the examples as highly relevant and agree with 90-100% of labels, sometimes more so than corresponding human-written datasets. We generate 154 datasets and discover new cases of inverse scaling where LMs get worse with size. Larger LMs repeat back a dialog user's preferred answer ("sycophancy") and express greater desire to pursue concerning goals like resource acquisition and goal preservation. We also find some of the first examples of inverse scaling in RL from Human Feedback (RLHF), where more RLHF makes LMs worse. For example, RLHF makes LMs express stronger political views (on gun rights and immigration) and a greater desire to avoid shut down. Overall, LM-written evaluations are high-quality and let us quickly discover many novel LM behaviors.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译